Tutorial 2

Armin Yousefi Kanani

FEA Process in NX/NASTRAN

- Geometry definition.
- Define component materials.
- 3. Define physical situation with boundary

conditions, i.e Restraint, Load

Modify

- Mesh the model.
- Run the analysis (solve the system of equations).
- View and evaluate the results.

1- Structure Module

There are two method to open model in Design simulation in NX.

1- Copy and paste the file **Bracket.prt** into a new folder>> Open this newly copied file. then Click on **NEW ADVANCED SIMULATIONS** if the part is NOT already opened in the NX window as shown below.

Kingston University London

1-1 Second method

If part is already opened in NX, then click on

Create Simulation

In first step you need to define the type of simulation in Ansys.

In this tutorial we are going to use **NX NASTARAN DESING** as solver and then click on **okay**.

Mesh:

In this step mesh will apply to geometry.

Mesh definition>>>refer to >>previous tutorial.

First select body then give element size 10 mm.

For more exercise change element type and compare result with each other.

Material:

Material

AISI Type 304 Stainless Steel

Physical Properties	Metric	English
Tensile Strength, Yield	215 MPa	31200 psi
Elongation at Break	70 %	70 %
Modulus of Elasticity	193 - 200 GPa	28000 - 29000 ksi
Poisson's Ratio	0.29	0.29

Kingston University London

How to switch from fem to sim

Boundary Condition:

Boundary Conditions: Boundary conditions are surfaces that are fixed to arrest the degrees of freedom. Some surfaces can be rotationally fixed and some can be constrained from translational movement.

Forces:

Force: This option allows you to exert different types of forces and pressures to act on the solid along with the directions and magnitudes.

Solve and Results

https://grabcad.com/library/tutorial-32-bracket-simulation-in-nx-1

Kingston University London

NX/PLM- Mesh Refinement

F = 10N

Element size = 20mm

Element size = 15mm

Element size = 5mm

Repeat simulation for three different mesh size

Finish

Example 1:

NX/PLM-Bracket

- Material Properties
- Steel
- Yield strength = 179MPa
- Restraint
- Boundary Conditions
- Mesh
- Load (F = 2500N)
- Analysis

Results- von-Mises

Yield stress = 179MPa

FoS = 1.18

Improvement of FoS to 2?

- Material selection
- Geometry optimisation

DO NOT FORGET:

Weight should be constant

Example 2

- 1-Download Bar from studyspace
- 2- open file in Nx
- 3- Mesh size 10 mm
- 4- Material same as pervious question make local material E=200 Gpa v=0.3 Yield strength: 215 Mpa
- 5- Boundary condition and force are shown in pic
- 7- solve

