Tutorial: SolidWorks Mold Tools

SOLIDWORKS mold
By **Stephen Nyberg** on 22 Mar 21:37 19 answers 22223 views 12 comments

Here is a simple Tutorial on using the Mold Tools in SolidWorks. For this tutorial we will make a simple basket and the corresponding mold. I used SoldiWorks 2012 and finished files made in the tutorial as well as the screen shots can be found on my profile.
This will not allow you to create a production mold but rather will introduce how to use the tools in SolidWorks.

If you are interested in learning more about injection molding (not SolidWorks specific) you should check out www.protolabs.com as they will send you a bunch of free stuff that will really help if you want to learn about
injection molding. There is a picture of some of the free stuff they sent me at the end of this tutorial.

Question unclear or needs more details before answering? Comment (12)

Add a comment

Post comment

19 answers

- Stephen Nyberg over 1 year ago
 - Report spam

This Tutorial was written "Barney Style" so even the most novice of SolidWorks users should be able to follow easily.

The files I created making this tutorial can be found here:
Tutorial: SolidWorks Mold Tools

1. Step 1

Open up SolidWorks.

To turn on the tool bar with the mold tools we will be using in this tutorial, right click in blank portion of the tool bar and this will open the "CommandManagers" - about half way down you find an icon labeled "MoldTools". Click this and it will add the mold tools toolbar to your window and this can be moved wherever you find convenient.
2. **Step 2**

Start a new part.

3. **Step 3**

This part is made in centimeters.

- click on the options button then then select the Document Properties tab.
- from here select units and click the CGS bullet.
- When finished select OK button on the bottom.
4. **Step 4**

Create a plane offset from the top plane by 15cm

5. **Step 5**

here is our new plane
6. **Step 6**

open a new sketch on this new plane.

(you can right click the plane in the feature tree and select the sketch icon to do this)

7. **Step 7**

Create the following sketch then exit the sketch.
8. **Step 8**

With the sketch we just created selected, press the extruded boss/base button in the features menu.

9. **Step 9**

Extrude down 15 cm with 6 degrees of draft angle
10. **Step 10**

Now We will use the shell command

11. **Step 11**

Select the top face and make the wall thickness 0.5 cm.
12. **Step 12**

Now that we have the basic basket, it needs a rim. Open a sketch on our plane 1 again.

13. **Step 13**

Use the convert entities button
14. **Step 14**

Select the segments that make up the inner loop of the top edge of the basket. and press green check mark to accept.

15. **Step 15**

now use offset Entities.
16. **Step 16**

 select the same inside loop from before and offset it 1.5 cm

17. **Step 17**

 exit this sketch
18. **Step 18**

With the last sketch still selected, choose the extruded boss/base button from the features menu ribbon.

19. **Step 19**

extrude down .5 cm.
20. **Step 20**

Now to make the cuts in the side of the basket we will start with opening a sketch on the right plane.

21. **Step 21**

Hit the space-bar and this will bring up a window to change the view. Let's make it normal to our sketch plane.
22. **Step 22**

Draw the sketch shown and then exit out of the sketch.

23. **Step 23**

Now in the features ribbon we will use the extruded cut option.
24. **Step 24**

Set directions 1 and 2 to through all.

25. **Step 25**

Now to pattern the cut, use the linear pattern tool.
26. **Step 26**

For Direction 1, choose the vertical edge highlighted in orange.

27. **Step 27**

Set the spacing to 6 cm and the number of instances to 2. Accept the settings by clicking the green check.
28. **Step 28**

Now for a few fillets

29. **Step 29**

add .5 cm fillets to the inside top and bottom edges.
30. **Step 30**

Now that our part is done, we need to perform Draft Analysis on it before we can start making our mold.

31. **Step 31**

After clicking on the draft analysis icon, we need to select the top plane as the direction of pull and a draft angle of 1 degrees and then press the green check.
32. **Step 32**

The faces of our part will change color depending on the draft of the face. We can see the edge around the top lip of our basket is yellow and needs draft added to it.

Clicking the green check again will exit out of draft analysis.

33. **Step 33**

To add the required draft, we will right click on the feature needing it (boss-extrude2) and click the upper left icon allowing us to edit this feature.
34. **Step 34**

click the draft icon and this will draft the feature.

35. **Step 35**

Now when we perform our draft analysis we can see that face is no longer yellow and is now red.

Our part is almost ready to make a mold now.
36. **Step 36**

Depending on the material, the part will shrink when cooled after molding. Therefore our mold needs to be a little larger than we want our final part to be. So we will scale up our part.

Click the scale button in mold tools menu.

37. **Step 37**

For this model we will scale it uniformly about the centroid with a scale factor of 1.02 but you can play around with the options to see what will happen.
38. **Step 38**

Now to make a parting line. The parting line will separate the positive and negatively drafted faces (the red from the green when we did the draft analysis) and this is also where the two halves of our mold will meet.

Click the Parting Line icon.

39. **Step 39**
Select the top face of the basket to define the direction of pull for our mold and set the draft angle to 1 degree.

Also be sure that the box for "use for core/cavity is checked.

Then click the draft analysis button.

40. **Step 40**

the parting line is created at the intersection of the positive and negatively drafted faces (red and green).
41. **Step 41**

 click the green check and our parting line is created.

42. **Step 42**

 Now to create shut-off surfaces. We need these because of the cutout holes in the side of the basket. These surfaces will denote where the core and cavity halves of the mold will meet.

 Click on the shut-off surfaces icon.
43. **Step 43**

The openings in the part are automatically detected and the inner edge of each opening is automatically selected. Be sure the knit option is selected.

44. **Step 44**

In the reset all patch types menu, click the all tangent button (the right one with a cross in the ball).
45. **Step 45**

after clicking the green check, you will see in the feature tree that you now have both solid bodies and surface bodies.
You can hide the solid body and expand the surface bodies menu and hide any of the surface bodies to see what you have.

![Image of feature tree and solid body]

46. **Step 46**

Here are the cavity and core surface bodies with the solid body of the part hidden...

![Image of cavity and core surface bodies]
47. **Step 47**

just the cavity surface...

48. **Step 48**

just the core surface...

49. **Step 49**

and just the solid body of the part.
(notice that part is encased between the two surfaces)

50. **Step 50**

Now we need to create a parting surface. This surface extends away from the part and is the surface that separates the two halves of the mold from each other.

Click on the Parting Surfaces icon.

51. **Step 51**
for this mold we will use the mold parameter of perpendicular to pull and the parting line will automatically be selected. Make sure the rest of the settings are as shown in the picture and then click the green check to complete.

52. **Step 52**

Now that we have these three surfaces it is time to create the mold. First we need to create a plane that will be where our two halves of the mold meet.
53. **Step 53**

create a plane that is offset 2 cm above the top of our part.

54. **Step 54**

with this new plane still selected, click the tooling split icon.

55. **Step 55**

This will open a new sketch on that plane. Draw the sketch shown in the picture.
56. **Step 56**

When you exit the sketch, it will bring you to the tooling split Property Manager.

57. **Step 57**

select the interlock surface box. this allows the two halve to the mold to interlock with each other allowing for them to stay properly aligned.

Set the other dimensions as shown in the picture.
It already knows what are surfaces are and has them properly selected.

58. **Step 58**

 click the green check and our mold is created.

 if you look at the feature tree, you can see that now we have three surface bodies and three solid bodies.

 take some time to hide these to see what we have.

59. **Step 59**
Here is the cavity and the part. As you can see, the part will be stuck in the cavity because of the cutouts in the basket.

60. **Step 60**

 just the cavity...

61. **Step 61**

 and the core...
62. **Step 62**

and our basket...

Now lets make sure everything is hidden except for our basket so we can perform undercut analysis on it.

Click the undercut analysis icon.

63. **Step 63**
The direction of pull is already decided and we just have to click the green check.

64. **Step 64**

like in the draft analysis, different faces become color coded. The red faces are the ones we need to create side cores to mold.

Click the check or x to exit the undercut analysis colors and exit.

65. **Step 65**
To create the cores for the basket cutouts, click the core icon.

66. **Step 66**

Select the outer face of the basket with the cuts in it.

67. **Step 67**

This will open a sketch. I find it easier to sketch with normal to the sketch plane.
68. **Step 68**

create this sketch.

69. **Step 69**

When you exit the sketch, the core property manager will appear.
70. **Step 70**

change the core/cavity body to tooling split one

See picture

71. **Step 71**

in the direction field select a line in direction of pull of the core.

select though all for direction 1 and un-check the cap ends box.
72. **Step 72**

When you click the green check your core will be created.

73. **Step 73**

Now repeat steps 65 to 72 and reference this picture to create the core on the other side.

(some of the direction will be goofy if you try to do it exactly as done in 65 - 72 so look at the settings below.)
74. **Step 74**

Here is the completed mold parts.

75. **Step 75**

I moved the individual solid bodies apart like an exploded view so you can see the different parts.
76. Step 76

A different angle

77. Step 77

Here is some of the great FREE stuff sent to me from www.protolabs.com
It worked (27)
Not helpful (3)
Comment (3)

1. barbad Report spam over 1 year ago

 please make pdf file for download trn

2. Abdul Haseeb Malik Report spam 9 months ago

 thanks

3. Hunt GE Report spam 3 months ago

 good
It worked ^^
I made it in Creo Parametric 2.0
Same to this tutorial.

1. **Step 1**

 I made it in Creo Parametric 2.0

 ![Creo Parametric 2.0](image)

2. **Step 2**

 I made it in Solidworks 2012
It worked (5)
Not helpful (2)
Add comment

Add a comment

Post comment

Dima Brahim 10 months ago
- Report spam

it works thx

Added images

It worked (2)
Not helpful (0)
Add comment

Add a comment
Great tut Stephen even if it is for SW LoL'ss
but very helpful and useful for many others to learn more about SW.
:)))))

It worked (1)
Not helpful (0)
Comment (2)

1. **Stephen Nyberg Report spam** over 1 year ago

Ha ha Thanks i guess ;) Do you ride motorcycles? Because if you did i bet you would be a Harley guy

2. **William Report spam** over 1 year ago

LoL'ss Stephen, no I do not ride a motorcycle as if I did I would be dead as I would need to push it to its limit all the time when driving it.

:(

Add a comment

Post comment

Alan 3 months ago

Report spam

Created in SW2014 SP4.0

Great tutorial!!

My question is how or where will the mold be injected?
1. Step 1

Nice glad you liked it. This was to help learn how to use the tools in SW, not make an actual mold.

- **Stephen Nyberg** Report spam 3 months ago

- **fouad alsham** about 1 month ago
 - Report spam

 i making thses

1. Step 1
It worked (1)
Not helpful (0)
Add comment

Add a comment

Post comment

Damjan over 1 year ago
 • Report spam

Hello,

is there a free ebook for Injection modling for dummies we can get? I am from Europe so sadly i cannot order the book from the site you mention.

It worked (0)
Not helpful (0)
Comment (2)

1. Stephen Nyberg Report spam over 1 year ago

That book is by ProtoLabs and they sent it to me for free. I am not sure if they have anything out of the US. You would have to contact them. Sorry.
Nice one Stephen. As much as I love SolidWorks, I have to admit that the mold tools are very basic to the point of being useless. Matt Lombard writes, in one of his brilliant books, that they are great for Frisbees and dinner plates but useless for more complex objects, and this is exactly right according to my experience.

Thanks

I may have done it slightly differently.
make the sides 7-8 degrees, and use sliding shutoff between the mold halves to form the holes in the sides.
this would eliminate using cams in the mold to form the slots...thus reducing the cost of manufacturing.

will post a tutorial in the next few days
Noel Stalker over 1 year ago

report spam

Sorry but I'm a total Solidworks noob. Where is the options button in step 3?

Stephen Nyberg Report spam over 1 year ago

If you click on the picture you will see the button circled in red and marked with a one.
You can also get to the same menu I think under "tools" and then near the bottom is
"options" Hope this helps

On the tutorial above you may need to click the image to see it all

محمد سعيد over 1 year ago

Report spam

good job
Thanks Stephen - this was one of the biggest holes in my Solidworks knowledge! I've made a few molds - but done essentially the same thing manually. This is way easier!

Glad i could help out I also liked your comment in the challenge about the "gold star" award

tanks

GOODMAN
Zaini 10 months ago
 ○ Report spam
 nice job

It worked (0)
Not helpful (0)
Add comment

saad bouta 10 months ago
 ○ Report spam
 nice job, thank s

It worked (0)
Not helpful (0)
Add comment

hasri 5 months ago
 ○ Report spam
 coll thanks mate's....

It worked (0)
Not helpful (0)
Add comment
Add your answer to: "Tutorial: SolidWorks Mold Tools"

Add your answer to this question here. The more on topic the better.

1. Create tutorial

 Step
 Picture:
 선택
 Không có tập nào được chọn

 2. Step
 Picture:
 선택
 Không có tập nào được chọn

 3. Add another step Cancel tutorial

Submit your answer
Similar questions

- **Complete mold tool SolidWorks** By Tom, 22 Oct 12:39
- **Solidworks Mold Toolsfree ebook download** By Vishal Goud, 21 Jan 17:48
- **tutorials on mould tools & full advance assembly** By navreet singh, 29 Oct 15:32
- **Tutorial: Unigraphics NX mold design : Section 6.1 Mold Parting Tools Region Analysis** By Hariprasad.V.Prabhakar, 19 Sep 16:02
- **Tutorial: Unigraphics NX mold design : Section 6.6 Mold Parting Tools Define Regions** By Hariprasad.V.Prabhakar, 19 Sep 16:51
- **Tutorial: Unigraphics NX mold design : Section 6 Mold Parting Tools** By Hariprasad.V.Prabhakar, 19 Sep 16:00

Similar tags

- **mold**

Popular systems

- **AutoCAD**
- **Autodesk Inventor**
- **CATIA**
- **NX**
- **Pro/Engineer Wildfire**
- **PTC Creo Elements**
- **SOLIDWORKS**
- **Solid Edge**
- **Other**

I wish this page...

I wish this page would...

Save **Cancel**

- **Community**
- **Library**
- **Challenges**
- **Tutorials**