# SOLIDWIZE ONLINE SOLIDWORKS TRAINING

## CSWP Sample Exam 2 (2012)

### **Segment 3 of the CSWP Core**

- -This test is made up of a series of problems broken down into sets of questions. Each problem set of questions comes with a description that outlines the problems to be solved for that set.
- -This section contains 11 questions
- -You should be able to complete all 11 questions within 80 minutes
- -Consult answer key after completion of this section

# Segment 3- Assemblies

#### **Question 1-Base Part**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

Material: Brass

Density: 8500 kg/m^3

Part Origin: Arbitrary

-Create the part below. Dimensions follow on the next page. Name the part base.sldprt.



What is the mass of the part (grams)?

\_\_\_\_\_





#### **Question 2- Create an Assembly**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

-Create a new assembly with the base part (position is arbitrary)

-Create the coordinate system as shown in the picture



What is the center of the mass of the assembly with respect to the new coordinate system?

a. X= 95.68, Y= 12.77, Z= -30.00

b. X= 4.32, Y= 12.77, Z= 0.00

c. X= -4.32, Y= 12.77, Z= 0.00

d. X=-95.68, Y=12.77, Z= 30.00

#### **Question 3- Add in a Part**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

Use Coordinate System 1

-Add Arm\_Mount.sldprt to the assembly as shown in the images below



What is the center of mass of the assembly?

X= Y= Z=

#### **Question 4- Add Another Part**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

Use Coordinate System 1

- -Add Arm\_lower.sldprt to the assembly as shown in the images below
- -Arm is centered between the tabs (width mate)



What is the center of mass of the assembly?

**X**=

Υ=

Z=

#### **Question 5-Collision Detection**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

-Delete the parallel relationship from question 4

-Rotate the assembly as shown.

-Use Collision Detection with "stop at collision" turned on



What is the angle indicated by "X"?

#### **Question 6- Create a new assembly**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

- -Create a new assembly and add in Shock\_Housing.sldprt
- -This assembly will be a subassembly in the assembly from Question 2
- -The new assembly will be referred to as "Shock.sldasm"



What is the mass of Shock.sldasm (grams)?

### **Question 7-Add a Part to the Subassembly**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

-Add Piston.sldprt

-Create the appropriate mates as shown.



What is the mass of Shock.sldasm (grams)?

- a. 216.50
- **b.** 428.03
- c. 358.19
- d. 314.61

#### **Question 8- Adding a Subassembly**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

Use Coordinate System 1

-Add Shock.sldasm, Arm\_upper.sldprt, and knuckle.sldprt to the orginal assembly created in question 2 as shown below

-No modifications to Shock.sldasm should be made





#### What is the center of mass of the assembly?

- a. X=54.52, Y=16.28, Z= -90.42
- b. X=79.20, Y=42.03, Z= -30
- c. X= -79.20, Y= 14.61, Z= -53.26
- d. X= 20.80, Y=42.03, Z= 0.00

#### **Question 9- Interference Detection**

Decimal Places: 2

- -Change the distance between the Piston and Shock\_Housing as shown (note that the distance mate has been flipped)
- -Use Interference Detection to determine collisions between the parts
- -The only box that should be checked in the Interference Detection Options is "make interfering parts transparent"



#### Which parts have interferences (check all that apply)?

| Arm_Mount     |
|---------------|
| Arm_Lower     |
| Arm_Upper     |
| Base          |
| Knuckle       |
| Piston        |
| Shock Housing |

#### Question 10- Flexible Subassembly and Create a new Part

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

Use Coordinate System 1

Material of new part: Plain Carbon Steel

Density: 7800 kg/m^3

-Suppress the distance mate in Shock.sldasm and make Shock.sldasm Flexible in the top level assembly

-Create the part shown below (spindle.sldprt)

-Add any other mates necessary as indicated below





What is the center of mass of the assembly?

X= Y= Z=

#### **Question 11- Replace Components**

Unit System: MMGS (millimeter, gram, second)

Decimal Places: 2

Use Coordinate System 1

- -Replace the base part with Base\_B.sldprt
- -Make the necessary changes based on the images below (angle mate from Q10 is eliminated)







What is the center of mass of the assembly?

X= Y= Z=