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An Energy Model of Plain Knitted Fabric 
K. F. CHOI1 AND T. Y. LO

Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
ABSTRACT 

A new mathematical model describing a plain knitted fabric is proposed in this paper.
One major feature of this model is that the yarn in the fabric can be naturally curved with
nonlinear mechanical properties. The new model is able to describe the dimensions and
also the low stress mechanical properties of a plain knit. Based on an energy analysis, the
inadequacy of the classic k-values is explained. Complex dimensional behavior and
problems associated with relaxation of knitted fabric are discussed. A more precise
prediction of fabric dimensions is possible by including the degree of set as one of the
parameters. The paper also explains why most of the studies of knitted fabric dimensional
properties in the past have been empirical.

Fabrics knitted from cotton are a very popular, and
thus very important to the textile industry. Cotton, being
a nonthermoplastic fiber, is unable to be heat set. This

category of knitted fabrics will relax naturally after knit-
ting, resulting in changing fabric dimensions. Due to the
nature of the knitting process, the fabric is knitted under
high stress and extension. Therefore, grey cotton fabrics
off the machine will exhibit large and varied amounts of
shrinkage. Measurements of shrinkage in grey fabrics are
therefore of little value to fabric finishers. What is of

value is the reference state of the fabric. This reference
state acts as a target of the norm for assessing fabric
dimensional behavior.

In attempts to understand the dimensional behavior of
knitted fabrics, the key element is the geometry of the
knitted loop. Pierce [21 ], Shinn 1271, Leaf [ 13, 14, 15],
Doyle [4, 51, Munden 120], Postle 122, 23], and recently
Demiroz et al. [3] have all significantly contributed to the
geometric analysis of plain knitted fabrics. In particular,
Leafs geometric model [15] has aroused the interest of
composite engineers [24]. The success of that model is

due to its simplicity and a good description of the actual
fabric. Recent innovative work (3J on loop geometry has
used spline curves to represent the loop, which is espe-
cially useful in the visual display of knitted fabrics on a
CAD system.

Yarn jamming in a knitted fabric has long been iden-
tified as a major factor determining its the dimensional

and mechanical properties. Knapton et al. III) ] concluded

.11 
-

that the stability of a cotton loop is reached when yarn
bulking is restricted by yarn jamming.

Alternatively, the dimensional properties of knitted
fabrics were studied by some researchers [8. 23, 25]
using the force method. In the theoretical models of
Postle et al. [23], Shanahan et al. [25], and Hepworth et
al. [8], yarn was treated as an elastica [ 18] that is natu-
rally straight. MacRory et al. [ 19) and Hepworth [91
attempted to tackle the biaxial load-extension problem of
knitted fabrics. MacRory’s model emphasized slippage
between loops and the biaxial load case with the loop
elements being straightened, while Hepworth’s model
concentrated on the effect of yarn jamming. &dquo;

Extensive experimental works have been accom-

plished by Heap et al. in the STARFISH project [7]. One of
their objectives was to predict the dimensional changes
of finished knitted cotton fabrics of some selected struc-
tures based on the knitting parameters and finishing
route. In their predictions, the ditnensional changes were
measured against the so-called reference state of a fabric.
This very important reference state was assumed to be
reached by a vigorous relaxation process of five wash
and tumble drying cycles. Heap et al. noted that further
relaxation after five cycles might still result in further
dimensional changes, even though these changes might
be small. In practice, there is no measure of how close
the five wash cycle state is to the reference state. A

theoretical model will be a solution to the situation such
that a theoretical reference state can act as a guide to the
effectiveness of relaxation processes. However, the

model must be relatively simple and able to interface
with the fabric actually knitted by a machine. Aiming at
this direction, we have developed a new energy model of
plain knitted fabrics as described later in this paper.
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Model Descriptions and Assumptions
. 

’ 

The new knitted fabric mechanical model we propose
is an energy odel with sufficient degrees of freedom for
loop deformation, including changes in loop height and
width. The y forming the loops is perfectly elastic and
incompressible with zero friction. It is naturally curved,
and its paths i the deformed states are the elements of a
prescribed fa ily of space curves.

This model can be used to determine the biaxial tensile
behavior of plain knitted fabric. The yams can be

axially comp ssed or extended at the low load region.
Conditions o loop jamming are taken as the geometric
constraints of loop deformation.

LOOP GEOME RY OF THE NEW MODEL

Studying knitted fabric mechanical properties with the
energy method requires a well-defined loop geometry.
Obviously, a sirnple loop geometry can ease the com-
plexity of the solution. On the other hand, the assumed
loop geomet must have enough degrees of freedom to
allow the fabtic to deform with a close approximation to
the actual loo shape.
As shown i Figure 1, the right-hand orthogonal ( xy:, )

axes are adap ed with the x-axis in the course direction,
the y-axis in the wale direction, and the :.-axis in the
direction no al to the fabric plane. When considering
the left half o a loop, by observing that the .r-coordinate
of a point a ong the loop with increasing length in-

creases, then ecreases and increases again, a polynomial
with a minimum degree of three is required. For the
v-coordinate, it increases slowly, then sharply and slowly
again, with ero rate of change at both ends. A cosine
function wit a half cycle is appropriate. For the ;,-

coordinate, i increases up to a maximum and then de-
creases with zero rate of change at both ends and mid-
point. Again a cosine function with a full cycle is

required. Th cosine function has been used by Leaf et
al. [ 15] to specify the variation of the ;,-coordinate of the
loop.
The parametric representation of the central axis of the

. loop is

where w is the loop width, (c + 2e) is the loop height,
e is the adjacent loop overlapping distance, t,, is the
fabric thickn ss, d is the yarn diameter, a is a free

parameter, a d t is the parameter of the space curve, i.e.,
t -~- [0, 1 ]. ter, a, e, and th can be determined by the

FIGI~RE I. Geometry of plain knit model.

condition of the loop touching in the .~, v, and direct-
tions.

LOOP SEPARATION PARAMETER 
’

With reference to Figure 2, the parameter t takes the Î

values 0,, 0.5, 92 at points A, B, and C, respectively.
Because the knitted loop is assumed to be antisymmetric
about point B, we have

Consider loop touching between C and A’,

with the assumption of incompressible yarn, ,

Consider loop touching between A and D,

Together with Equations 4 and 5, we have

In summary,

When X is within this range, loops do not touch each
other in the .r-direction.

DETERMINING SHAPE PARAMETER a

Assumption: Points of the loop touching (at A and C
in Figure 2) are the turning points in Equation 1, i.e.,
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FIGURE 1, Loop touching.

If T, and f32 are the roots of Equation 10, we have

with .r((3~ ) - x(/3,) = Xd, 0 = {31 < {32 ::f 1. In this

way, the shape parameter a can be expressed in terms
of X.

DETERMINING LOOP OVERLAP e

In the knitted fabric structure, loop interlocking results
in yarn overlapping. This overlapping space is required
for determining course spacing, as described by the ear-
lier assumption. Based on the loop geometry of the new
model as described in Equation 2,

After simplification, we have

DETERMINING FABRIC THICKNESS t~~ II

Points E and F (at t = (33 and t = f3,~ as shown in
Figure 3) are the points in the loop at which the loops
touch each other in the z-direction (thickness direction)
and would satisfy the two conditions. They have a height
difference equal to c and they have equal x-coordinates,
i.e., V(04) - y(/33) = c and X(03) = x((3,~). From the
two equations, we can find 133 and 04-

FIGURE 3. Loop touching in -d4f’CCtlOtt.

Fabric thickness y can be determined by the relation
~(~84) &dquo; Z(93) = d; after simplification, we have

DETERMINING SEPARATION PARAMETER X

The loop separation parameter can be determined by
maintaining an unchanged loop length in the deformed
fabric. i.e., L,. = L,,,. When X satisfies the following
condition, &dquo;,

the yam loop remains unstrained. Otherwise jamming
occurs, the yarn is extended or compressed, and yarn
strain e,. is 

;1

Mechanical Energy of a Deformed Loop
The total mechanical energy U of one yarn loop is

equal to the sum of the tensile energy U,, bending energy
U7, and torsional energy UK, i.e., U = U, + U + U,,:
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Yarn extension is assumed to be constant along the yarn,
and with the rk-parametrization in t, the total mechanical
energy in din~ensionless from U’ is given below:

i

where U’ = t/L,/~, tex and L,. are the yam linear

density and loop length, respectively, E, B, and C are the
tensile, bending, and torsional moduli of the yam, N
= C/$, ~ (p ase angle) is the angle between the yam’s
principal axe and the principal normal to the yam axis,
K and T are t e total curvature and torsion of the yam,
and K~, and T~, are the total curvature and torsion of the
yam in its natural state.

Biaxial ensile Model of Knitted Fabric

The exter 1 forces acting on the knitted fabric are
the tensile lo~ads in the course and wale directions, 7,
and T&dquo;. (in force per course and per wale, respectively),
as shown in Figure 4. If the external forces are con-

servative, they have a potential W. Since no frictional
forces are included in the analysis and the yarn is
assumed to elastic, the knitted fabric is treated as a
conservative system, and the potential energy V of the
fabric is the um of the elastic strain energy U and the
tota.l work done W by external forces. The total po-
tential energ is

GURE 4. Fabric under biaxial loading.

By the principle of minimum potential energy [ l2],
with prescribed external loads (T,. and T,,.), the fabric is
in stable equilibrium if and only if the total potential
energy V(c, n) is at a minimum. A necessary and
sufficient condition for stable equilibrium is 8V = 0 and
82V > 0, where V is the total potential energy of the
fabric:

where 8c stands for an arbitrary quantity of c, etc.,

When the external forces are prescribed, the fabric di-
mensional parameters (c and w) can be determined from
this system of partial differential equations. Hence, we
have a biaxial tensile model of knitted fabric.

Degree of Set .

In this energy model, the yam forming the knitted loop
is naturally curved. This natural curvature is defined as

the curvature of a yam course when removed from the
knitted fabric without introducing any disturbance to the
yam. Instead of discussing the practical difficulties in-
volved in measuring natural curvature, we explain the
concept as follo~vs:

It is very rare that a yam course is found to be straight
after being unraveled from a finished fabric. For a freshly
machine-released fabric, the yam may be much less

curved than that of the finished fabric, but it still looks

wavy. As in the knitting process, the yam is bent into
loops with large curvature, especially near the needle
loop and sinker loop. Plastic deformation may take place
due to fiber slippage and/or fiber permanent extension ¡
near the outside region of the curved yam. The finishing
process in most cases has a certain setting effect on the
yam in the knitted fabric. As a result, the yam that is
removed from a knitted fabric should have a curvature
value between zero and the curvature at the correspond- 

I

ing position in the knitted loop. The two extremes stand I

for naturally straight yam and fully set yam. !
Let K(s) be the curvature of the yarn in the fabric

and K~,(s) its natural curvature. When K&dquo;(s) = 0, the ;
yarn is naturally straight. When K&dquo;(s) = rc(s) and T,,(s)
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= T(s) for s E [0, L,], the yarn is fully set. By assuming
that K~,(S)/K(S) = T&dquo;(s)lr(s), the degree of set (~) of the

I yarn is defined as ~(s) = K,;(s)/K(s), and 0 ~ ~(s) ~ l.

EFFECT OF DEGREE OF SET

The energy analysis of the plain knit structure in this
work considers the degree of set in the yam after it has
been knitted into a fabric. This is important because the
degree of set is critical in determining the total energy in
the structure. When the fabric is fully relaxed, the inter-
nal energy is at its minimum. As shown in Figure 5, the
loop model proposed here predicts that when the degree
of set is 1.0, the minimum energy will be zero. When the

,1 
yam has a natural shape that differs from its shape when
it is in the fabric, the degree of set is less than 1.0. When

j the elastic properties of the yarn take effect, the mini-
, 

mum energy is >0. The minimum energy value increases
with a decrease in the degree of set, and it reaches a

maximum value when the degree of set is 0.0 such that
the natural shape of the yam is straight even after being
held in the fabric for a prolonged time.

FIGL’RE 5. Minimum energy values for fabrics with yarns
of different degrees of set

The fully relaxed fabric dimensions are also affected
by the degree of set. When a fabric is fully relaxed, its
loops will take a certain shape. But the prediction of the
loop model shows that in the fully relaxed state, the

course spacing and wale spacing sets are different for
different degrees of set in the yarn, as illustrated in

Figure 6. The ratio between course spacing and wale
spacing is known as the loop shape factor, and it is

directly related to the length and width of the whole
fabric.
A change in the degree of set in the yam results in a

different energy value and a different loop shape and
dimensions when the fabric is fully relaxed. When the

FIGURE 6. Points of minimum energy for fabrics with yams
of different degrees of set

Ii

fabric is not fully relaxed, there will be a range of wale
and course spacing sets for each particular energy level.

Similarly, when the degree of set in the yarn changes,
there will be a new set of wale and course spacings for
the same degree of relaxation im the fabric. The dimen-
sions of fabrics with different degrees of set in the yarns
will therefore have different dimensions for various de-

grees of relaxation, including the fully relaxed state.

Dimensions of Plain Knit Fabric

PREDICTING FABRIC DIMENSION~1
I

Experimental observations by Doyle [4] confirmed the
dependence of fabric area on the loop length of plain knit
fabrics. The dimensions of a knitted fabric are believed
to be predominately determined by loop length and are
independent of other yam and knitting parameters. The
relationship can be described by a set of k-value [20]:

where rpc is course per cm, wpc is wales per cm. S is

stitch density in stitches per cm . and L, is loop length.
The k-values predict that the loop length is the sole

parameter determining the dimensions of plain knitted
fabric, and these dimensions can be precisely predicted
by controlling the loop length when properly relaxed.
However, the k-values known to most researchers are

not, in general, universal to all plain knitted fabrics.
Different sets of k-values exist for different fabrics and

II j
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also for the :same fabric at different relaxation states.

Although exoerimental studies showed strong linear cor-
relations bet een the inverse of the loop length and the
fabric dimensions (such as coarse density c P c and wale
density , measured data points seldom tied up as
expected. T e relationship described by cpc = k~lL~.
should result in a straight line passing through the origin
when the cp values is plotted against 1 /L,..

Experiments [6, 16] demonstrated that the linear re-

gression Iin s more often than not result in significant
intercepts, e pecially in the less relaxed states such dry
and wet relaxation. The k-values therefore represent only
an approxim tion of the relationship between the dimen-
sional parameters of the fabric and the loop length. As a
result, the k-value is often less than useful for predicting
fabric dime sions due to poor precision. So far, there is
not a single t of k-values published with full confidence
that would useful for predicting fabric dimensions in
the industry nd that can be reproduced every time. Most
finishing mi Is are still relying on their own data accu-
mulated ove the years. The STARFISH project [7] built up
a data base or predicting fabric dimensions instead of
using k-valu!s. That project included yam type, fabric
structure, an finishing routine as variables, and predic-
tions were ade by interpolation or extrapolation of the
data sets obtained experimentally. The project assumed a
linear relationship between the fabric dimensional pa-
rameters and the inverse of the loop length, but permitted
a straight lioe that did not pass through the origin by
including a ~oefficient in the equation:

where cpc i course density, tex is the linear density of
yam, a,, an a, are regression coefficients, a, is a re-

gression coe ficient related to yam linear density, and L,.
is loop lengt . Considering the situation ( 17] where the
loop length Ly increases, the cpc value will decrease
accordingly:

It would o~ly be logical to expect that the line should
pass throughjthe origin. Obviously the STARFISH project,
using linear regression equations with intercepts, was
just being pragmatic, intending to provide the best ap-
proximation within a practical range of fabrics. The
k-values ma only be an over-simplified solution after
all.

The inabili y to arrive at a universally applicable set of
k-values is as umed to be due to the relationship between
the dimensio al parameter such as cpc or wpc and is

actually nonlinear in most relaxed states of a fabric [17].
Figure 7 shows the relationship between the inverse of
the loop length and the fabric dimensional parameters
based on the loop model proposed in this paper. Plain
knit fabrics are assumed to be fully relaxed, i.e., at their 

I

minimum energy state, at a degree of set of 0.8, and
changes in loop shape during relaxation are free from
frictional constraints. It is clear that the relationships
between the inverse of the loop length and either cpc or
wpc are both nonlinear. The gradient of the lines in-
creases when fabric tightness increases. Also, the rate of
gradient change is faster when the value of I/Ly is large
or when the fabric is on the tight side.

I

FIGURE 7. Theoretical relationship between <.p<./u.p<. and 1/ L, when I

fully relaxed. Fabric dimensions at different loop lengths, degree of set
= 0.8, yarn tex = 90.

When the fabric tightness factor is given by Vtex/Z~ , &dquo;
with Lv in cm, the practical range is about 10 to 22, 10
being very slack and 22 being very tight. The theoretical
fabrics in Figure 7 cover a range of tightness factors from 1:
4.7 up to 20.8, corresponding to 1/L,. values 0.5 and 2.2,
respectively. The practical range is indicated by the two
lines for tightness of 12.1 and 20.8. Examining the data
points in this region generated from the loop model, we &dquo;
see that they form a line not much different from a

straight line, since the rate of gradient change is low in
this region. If the relationship is assumed to be linear to
start with, experimental data points in this region will J
falsely support that assumption, even though the line is in
fact not straight. This explains why the STARFISH project
prefers to adopt a straight line with an intercept, conflict-
ing with the argument that when I/L,. - 0 then cpc ~
0. In that case, they avoid the increased error by forcing
the regression line passing through the origin.

Figure 8 shows a comparison of this theoretical pre-
diction with results published by Knapton et al. [ l0).
Their experimental results belonged to a set of fabrics 

I

I,
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FIGL~RE 8. A comparison with Knapton’s [ 10] experimental results.

tumbled at 70° for I hour, taken as the fully relaxed state,
since the fabrics would be practically stable in dimen-
sions. The experimental results bunched in a narrow

region of fabric tightness, as discussed above. The cpr
values match very well with the theoretical predictions.
The HpC values do not match as well as the cpc values,
but are considered to behave very similarly. Some dis-
crepancy is expected in this case and there should be.
since it is highly probable that the experimental fabrics
adopted here, though they went through a vigorous re-
laxation process, were not at their truly minimum energy
state. What this set of data points is compared with is a
calculated data set based on a theoretical minimum en-

ergy state.

RELAXATION AND CHANGE OF FABRIC DIMENSIONS

In practice, achieving a perfect minimum energy state
for a fabric is believed to be difficult. According to the
energy analysis of our loop model, there would be one
loop shape possessing the minimum potential energy, as
shown by the energy mapping in Figure 9 (strain energy
is equal to total . potential energy when external forces
vanish). At energy levels above the minimum, there can
be loops with different shapes but with the same poten-
tial energy. The different loop shapes are evident in the
different ratios of course and wale spacing. Figure 10
shows the energy contours of a fabric when taking up
different loop shapes, resulting in different course and
wale spacings. The contours show that the gradient of the
energy levels is steeper when the energy is high. When
the energy level is close to the minimum it flattens,
meaning that, in agreement with Shanahan’s [25] con-
clusion, the minimum energy state is unstable and diffi-
cult to achieve. Experimental observations will therefore
mostly involve fabrics with potential energy above the

FIGI’RE 9. Energy mapping of a plain knit fabric. Fabric dimensions
at different loop lengths, degree of set = 0.8. yarn tex = 90.

11

FtCLRE 10. Relaxation along energy contours.

minimum, where a range of loop shapes is possible,
forming one of the contours shown in Figure 10.

In the energy change perspective, the mechanism of
relaxation is viewed as follows: A fabric at a certain
relaxed state possessing a certain energy can be repre-
sented by point A, as shown in Figure 10, on one of the
contour lines determined by its loop shape. If the fabric
is allowed to relax, the point starts to move to the other
contour line of lower energy until ultimately arriving at
the point of minimum energy Ulin, as. shown by relax-
ation route I in Figure 10. Possibly the path of point A
moves from the higher energy contour to the point of
minimum energy by an alternate relaxation route 2 (in
Figure 10), depending on the environment or relaxation
process. On the other hand, the same fabric may also
have a different starting point on the energy contour, as
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. illustrated b point B in Figure 10. Clearly, upon relax-
ation, yet an ther route 3 different from the previous two
will be take up. The dimensions of the fabric or the loop
shape at an state of relaxation before reaching the true
fully relaxe state is much affected by the relaxation
starting poi and the relaxation route down the energy

. contours.

A fabric i the machine state possesses high potential
energy, and when it is allowed to relax, will gradually
move to lo er energy levels until eventually, in theory,
it reaches t e minimum energy state. In the course of

’ 

relaxation, t e loop shape changes. For example, when a
fabric is m ving from the dry relaxed state to the wet
relaxed the loop shape changes. After relaxation,
the loop wil take up a new shape, and that will be one of
the shapes a defined by the wet relaxed energy contour
shown in Figure 10. The different loop shape with the
same energ level can be larger when the energy level is
high. Conse uently. it is not surprising to see inconsis-
tency in ex rimental observations on the relationship
between loop length and fabric dimensions. The problem

&dquo; 

is more ac e when the fabric is less relaxed or at a

higher energ level. It is possible for two sets of identical
, 

fabrics related by the same process to end up with
’ 

different 1 shapes and hence different fabric dimen-
sions, unles the truly minimum energy state has been
reached. 

,

The loop model proposed here predicts that plain
fabrics knitted from the same yam when fully relaxed
will take up definite loop shape, and so the dimensions
are determined by loop length and independent of ma-
chine and finishing parameters. Unfortunately, in prac-
tice fabrics e observed and used at energy states above
the minimu . In this case. the dimensions and behavior

. of these fab-ics will be affected by their fiber and yarn
properties cause there will be different degrees of set

. for different yarns and fibers. The degree of set of the
.&dquo; yam in the fabric will result in significantly different
energy contours and hence loop shapes and fabric di-
mensions. For a similar reason, machine parameters such
as machine auge, fabric take-down tension, and stretch

&dquo; board width will affect the relaxation starting point on
the energy ontour. Consequently, the relaxation route
will be diffe ent. The finishing or relaxation process will
also have significant effects on fabric dimensions. Start-

. ing with the same grey fabric (same relaxation starting
point on the energy contour), the relaxation process will
determine the relaxation route down the energy contours.
The effectiveness will also determine which final energy
contour the abric will reach and hence the dimensions.

Empirical studies of the relationships between fabric
dimensions nd yam, machine, and finishing parameters
by multiple egression analysis will have no meaning if

the relaxation starting point, that is, the degree of set in
the yarn. is not considered.

Model Applications .’

Besides predicting biaxial tensile properties of knitted
fabrics, the model can also be used to solve the dimen-
sional problems, for instance, predicting the reference
state of a partially set knit, (i.e., a fabric composed of
naturally curved, twist-lively yarn). The initial state of
the fabric is not in stable equilibrium. Friction between
loops temporarily maintains the shape, but that shape
will change with a small disturbance. At the fully relaxed
state, all frictional forces vanished since there is no more
relative movement. We can determine the fabric dimen-
sional parameters by setting the external forces at zero:,

The accuracy of the predicted results is determined by
a number of factors. The most important one is the

availability of the natural curvature and torsion of the,
yam, which is difficult to measure and changes with time
and environmental conditions. Other important factors
include the accuracy of the measured yam mechanical

properties (i.o., tensile, ending, and torsion moduli) since
they are highly nonlinear and coupled with one another
(i.e., bending rigidity decreases when the yarn is untwist-
ed). It is much better to replace the experimentally mea-
sured yam mechanical properties with theoretical mod-
els. A recently developed tensile torsional model of

singles [ I ] and two-ply yarn [2j can be used. but there is
no suitable yarn bending model the literature. One major
reason is that the complicated movement of fibers in

yams during bending deformation can not be simulated
satisfactorily. Once this problem is solved, the knitted
fabric mechanical properties could be predicted by start-
ing with the fiber properties. <

Conclusions

We have developed a new mechanical model for a
plain knitted fabric using the energy approach. The
geometry of a knitted loop should be as simple as
possible and yet capable of describing the dimensional
changes in a fabric (e.,~., wale/course per unit length,.
skewness). The degree of set of the yarn in the knitted
fabric has a great influence on the fabric’s dimensional

stability and hence the reference state. In our new
model, the yarn in the fabric can be naturally curved.
This natural curvature and torsion of the yarn can be

input as functions of arc length. The total mechanical
energy is calculated based on the difference in bending

 © 2003 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Flinders University on June 22, 2008 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com


747

strain and torsional strain of the yarn with respect to
the natural curvature and torsion.
We have explained the inability of the classic k-values

to effectively predict fabric dimensions. The problems
and inconsistencies of empirical studies of knitted fabric
dimensional behavior can also be explained by our the-
oretical model. The important fact that the yarn in a
fabric is partially set must not be overlooked, and only
when this parameter is taken into account can the dimen-

sional behavior of a plain knit structure really be under-
stood.
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Appendix

c course spacing
w loop width
d yarn diameter

th fabric thickness ’

e adjacent loop overlapping distance
K total curvature of a point along the center line of the

loop .

K&dquo; total curvature in the natural state of yam
T torsion of a point along the center line of the loop
T,, torsion in the natural state of yam
U total mechanical energy
V total potential energy
W total work done by external force
r,. radius of yarn

e~. yam strain

L,. loop length
E tensile modulus of yam (in force per tex) >
B bending rigidity of yarn
C torsional rigidity of yam
<~ phase angle (angle between yam’s principal axes

and the principal normal to the yam axis)
,T,. tensile load in the course direction

T,,. Tensile load in the wale direction

t/r degree of set
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