FEM with Solid Edge

Types of calculus

- -Linear static
- -Normal Modes
- -Linear Buckling

Linear static

Statics is the branch of <u>mechanics</u> that is concerned with the analysis of loads (<u>force</u> and <u>torque</u>, <u>or "moment"</u>) on <u>physical systems</u> in static equilibrium, that is, in a state where the relative positions of subsystems do not vary over time, or where components and structures are at a constant velocity. When in static equilibrium, the system is either at rest, or its <u>center of mass</u> moves at constant velocity.

Normal Modes

A **normal mode** of an <u>oscillating system</u> is a pattern of motion in which all parts of the system move <u>sinusoidally</u> with the same frequency and with a fixed phase relation. The motion described by the normal modes is called <u>resonance</u>. The frequencies of the normal modes of a system are known as its natural frequencies or <u>resonant frequencies</u>. A physical object, such as a building, bridge or molecule, has a set of normal modes that depend on its structure, materials and boundary conditions.

Linear Buckling

In practice, buckling is characterized by a sudden failure of a structural member subjected to high <u>compressive stress</u>, where the actual compressive stress at the point of failure is less than the ultimate compressive stresses that the material is capable of withstanding. For example, during earthquakes, reinforced concrete members may experience lateral deformation of the longitudinal reinforcing bars. This mode of failure is also described as failure due to <u>elastic instability</u>.

Xabier Zarrandicoechea Mechanical Engineer xzarrandiko@hotmail.com

Four types of mesh

-Beam type

-Tetrahedral type

-Shell type

-Hibrid type, shell and tetrahedral

Steps to follow in a FEM calculus

- 1.- Design Material
- 2.- Geometry validation
- 3.- Apply Loads
- 4.- Apply constraints
- 5.- Define mesh
- 6.- Calculus

Apply loads

Apply loads

Xabier Zarrandicoechea Mechanical Engineer xzarrandiko@hotmail.com

Apply constraints

Apply mesh

Specify the size of mesh for diferent options, edge, syrface or body.

Apply mesh

Xabier Zarrandicoechea Mechanical Engineer xzarrandiko@hotmail.com

1.-Analysis of a piece

- 1.- Find the point of maximum Von Mises stress.
- 2.- Find the maximum displacement of the workpiece in the direction Z.

Pressure 1: 1000 Psi (Z Direction)

Mesh size = 8

1.- Analysis of a piece

Xabier Zarrandicoechea Mechanical Engineer xzarrandiko@hotmail.com

Maximun Value Node=(152,10,-39)mm Value=2.04e+05 psi

Node=(160,107,-31)mm Value=-1.7 mm (T3) Deformation=(0.461,0.336,-1.7)mm

- 1.- Find the point of maximum Von Mises stress.
- 2.- Find the maximum displacement of the workpiece in the direction Z.

Force 1: 200 lbf (X Direction)

Mesh size = 6

Connector = Glue

2.- Analysis of assembly

Xabier Zarrandicoechea Mechanical Engineer xzarrandiko@hotmail.com

Maximun Value Node=(0.506,-1.11,-3.42)in Value=1.44e+04 psi

Maximun Value Node=(-2.03e-015,7.38,5.99)in Value=0.0029 in

3.-Analysis of a shell and part

- 1.- Find the point of maximum Von Mises stress.
- 2.- Find the maximum displacement of the workpiece in the direction Y.

Pressure 1: 3 psi (Y Direction)

Mesh size = 5

Connector = Glue

3.- Analysis of a shell and part

Xabier Zarrandicoechea Mechanical Engineer xzarrandiko@hotmail.com

Maximun Value Node=(0.744,6.59,7.33)in Value=6.99 ksi

Maximun Value Node=(-9.11,6.56,8.22)in Value=0.559 in

4.-Analysis of a piece

- 1.- Find the point of maximum σx stress.
- 2.- Find the maximum displacement of the workpiece in the direction X.

Pressure 1: 4000 kpa (X Direction)

Mesh size = 8

Constraints = Cilindrical (Radial Free)

4.- Analysis of a piece

Xabier Zarrandicoechea Mechanical Engineer xzarrandiko@hotmail.com

Maximun Value Node=(58.8,-15.3,-6.43)mm Value=0.00475 MegaPa

Maximun Value Node=(90,-15,0)mm Value= 1.44e-006 mm

5.-Analysis of a sheet metal

- 1.- Find the point of maximum Von Mises stress.
- 2.- Find the maximum displacement of the workpiece in the direction Z.

Force 1: 10 N dirección Z

Force 2: -10 N dirección Y

Edge size 2 in the edge shown

Mesh size = 3

Constraints = Fixed

5.- Analysis of a sheet metal

Xabier Zarrandicoechea Mechanical Engineer xzarrandiko@hotmail.com

Maximun Value Node=(-670,565,1.61e+003)mm Value=811 MegaPa

Maximun Value Node=(-710,701,1.73e+003)mm Value= 251 mm

6.-Analysis of a sheet metal normal modes

Find the 6 normal modes and show which is the higher stressful for the sheet metal.

Material Aluminum 6061-T6

Fixed constraint in the face shown

6.- Analysis of a sheet metal normal modes

Maximun Value

Node= (63.9,147,2)mm

Value= 1.56e+005 MegaPa

Modo 6

2.634e+002 Hz

7.-Analysis of a beam in buckling

Material Aluminum 6061-T6

Fixed constrain in the face shown

Force 10 N in the face shown

7.- Analysis of a beam in buckling

