Helical Gear Mathematics Formulas and Examples

Earle Buckingham
Eliot K. Buckingham
Buckingham Associates, Inc.
Springfield, VT

The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.

AUTHOR:

ELIOT K. BUCKINGHAM is president of Buckingham Associates, Inc., a consulting firm working in the areas of design, application and manufacture of gears for any type of drive. Mr. Buckingham earned his B.S. from Massachusetts Institute of Technology and his M.S. from the University of New Mexico. He is the author of Tables for Recess Action Gears and numerous technical papers, as well as the revised edition of The Manual of Gear Design by Earle Buckingham. He is a member of ASME and a Registered Professional Engineer in the State of Vermont.

Given the pitch radius and lead of a helical gear, to determine the helix angle:
When,

$$
\begin{aligned}
& \mathrm{R}=\text { Pitch Radius of Gear } \\
& \mathrm{L}=\text { Lead of Tooth } \\
& \psi=\text { Helix Angle }
\end{aligned}
$$

Then,

$$
\operatorname{TAN} \psi=\frac{2 \pi \mathrm{R}}{\mathrm{~L}}
$$

Example:

$$
R=3.000 \quad L=21.000
$$

$$
\operatorname{TAN} \psi=\frac{2 \times 3.1416 \times 3.000}{21.000}=.89760 \quad \psi=41.911^{\circ}
$$

The involute of a circle is the curve that is described by the end of a line which is unwound from the circumference of a circle as shown in Fig. 1.

When,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{b}} & =\text { Base Radius } \\
\theta & =\text { Vectorial Angle } \\
\mathrm{r} & =\text { Length of Radius Vector }
\end{aligned}
$$

Then,

$$
\theta=\frac{\sqrt{r^{2}-R_{b}^{2}}}{R_{b}}-A R C \text { TAN } \frac{\sqrt{r^{2}-R_{b}^{2}}}{R_{b}}
$$

Given the arc tooth thickness and pressure angle in the plane of rotation of a helical gear at a given radius, to determine its tooth thickness at any other radius:

When,

$$
\begin{aligned}
\mathrm{r}_{1} & =\text { Given Radius } \\
\phi_{1} & =\text { Pressure Angle at } \mathrm{r}_{1} \\
\mathrm{~T}_{1} & =\text { ARC Tooth Thickness at } \mathrm{r}_{1} \\
\mathrm{r}_{2} & =\text { Radius Where Tooth Thickness is To Be Determined } \\
\phi_{2} & =\text { Pressure Angle at } \mathrm{r}_{2} \\
\mathrm{~T}_{2} & =\text { ARC Tooth Thickness at } \mathrm{r}_{2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\cos \phi_{2} & =\frac{r_{1} \cos \phi_{1}}{r_{2}} \\
T_{2} & =2 r_{2}\left(\frac{T_{1}}{2 r_{1}}+\operatorname{INV} \phi_{1}-\operatorname{INV} \phi_{2}\right)
\end{aligned}
$$

Example:

$$
\begin{aligned}
r_{1} & =2.500 \quad T_{1}=.2618 \quad r_{2}=2.600 \\
\phi_{1} & =14.500^{\circ} \quad \operatorname{COS} \phi_{1}=.96815 \quad \text { INV } \phi_{1}=.00554 \\
\cos \phi_{2} & =\frac{2.500 \times .96815}{2.600}=.93091 \\
\phi_{2} & =21.425^{\circ} \quad \text { INV } \phi_{2}=.01845 \\
T_{2} & =2 \times 2.600\left(\frac{.2618}{5.000}+.00554-.01845\right)=.2051
\end{aligned}
$$

Fig. 2

Given the helix angle, normal diametral pitch and numbers of teeth, to determine the center distance:
When,

$$
\begin{aligned}
\psi & =\text { Helix Angle } \\
\mathrm{N}_{1} & =\text { Number of Teeth in Pinion } \\
\mathrm{N}_{2} & =\text { Number of Teeth in Gear } \\
\mathrm{C} & =\text { Center Distance } \\
\mathrm{P}_{\mathrm{n}} & =\text { Normal Diametral Pitch }
\end{aligned}
$$

Then,

$$
C=\frac{N_{1}+N_{2}}{2 P_{n} \cos \psi}
$$

Example: $\quad \psi=30^{\circ} \quad \mathrm{P}_{\mathrm{n}}=8 \quad \mathrm{~N}_{1}=24 \quad \mathrm{~N}_{2}=48 \quad \operatorname{COS} \psi=.86603$

$$
C=\frac{24+48}{2 \times 8 \times .86603}=5.1961
$$

Given the arc tooth thickness in the plane of rotation at a given radius, to find the normal chordal thickness and the normal chordal addendum:

When,

$$
\begin{aligned}
\mathrm{T} & =\text { ARC Tooth Thickness at } \mathrm{R} \text { in Plane of Rotation } \\
\mathrm{T}_{\mathrm{n}} & =\text { Normal Chordal Thickness at } \mathrm{R} \\
\mathrm{Q}_{\mathrm{n}} & =\text { Normal Chordal Addendum } \\
\mathrm{R}_{0} & =\text { Outside Radius } \\
\mathrm{R} & =\text { Pitch Radius } \\
\psi & =\text { Helix Angle at } \mathrm{R}
\end{aligned}
$$

Then,

$$
\begin{aligned}
A R C B & =\frac{T \cos ^{2} \psi}{2 R} \\
T_{n} & =\frac{2 R \operatorname{SIN} B}{\cos \psi} \\
Q_{n} & =R_{0}-\cos B \\
T & =.2267 \quad R_{0}=1.8570 \quad R=1.7320 \\
\psi & =30^{\circ} \quad \operatorname{COS} \psi=.86603 \quad \cos ^{2} \psi=.75000
\end{aligned}
$$

Example: $\quad T=.2267$

$$
A R C B=\frac{.2267 \times .7500}{2 \times 1.7320}=.04908 \quad B=2.812^{\circ}
$$

$\operatorname{SIN~B}=.04906 \quad \operatorname{COS} B=.99880$

$$
T_{n}=\frac{2 \times 1.7320 \times .04906}{.86603}=.1962
$$

Fig. 3

$$
Q_{n}=1.8570-(1.7320 \times .99880)=.1271
$$

Given the circular pitch and pressure angle in the plane of rotation and the helix angle of a helical gear, to determine the normal circular pitch and the normal pressure angle:

When,

$$
\begin{aligned}
\psi & =\text { Helix Angle } \\
\phi & =\text { Pressure Angle in Plane of Rotation } \\
\mathrm{p} & =\text { Circular Pitch in Plane of Rotation } \\
\phi_{\mathrm{n}} & =\text { Normal Pressure Angle } \\
p_{\mathrm{n}} & =\text { Normal Circular Pitch }
\end{aligned}
$$

Then,

$$
\mathrm{p}=\mathrm{p} \operatorname{COS} \psi \quad \operatorname{TAN} \phi_{\mathrm{n}}=\operatorname{TAN} \phi \operatorname{COS} \psi
$$

Example:

$$
\begin{aligned}
& \mathrm{p}=.3927 \quad \psi=23^{\circ} \quad \phi=20^{\circ} \quad \operatorname{COS} \psi=.92050 \quad \text { TAN } \phi=.36397 \\
& \mathrm{p}_{\mathrm{n}}=.3927 \times .92050=.36148 \quad \text { TAN } \phi_{\mathrm{n}}=.36397 \times .92050=.33503 \\
& \phi_{\mathrm{n}}=18.522^{\circ}
\end{aligned}
$$

Given the arc tooth thickness and pressure angle in the plane of rotation at a given radius, to determine the radius where the tooth becomes pointed:

When,

$$
\begin{aligned}
& \mathrm{r}_{1}=\text { Given Radius } \\
& \mathrm{r}_{2}=\text { Radius where Tooth Becomes Pointed } \\
& \mathrm{T}_{1}=\text { ARC Tooth Thickness at } \mathrm{r}_{1} \\
& \phi_{1}=\text { Pressure Angle at } \mathrm{r}_{1} \\
& \phi_{2}=\text { Pressure Angle at } \mathrm{r}_{2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\operatorname{INV} \phi_{2} & =\frac{T_{1}}{2 r_{1}}+\operatorname{INV} \phi_{1} \\
r_{2} & =\frac{r_{1} \cos \phi_{1}}{\cos \phi_{2}}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& r_{1}=2.500 \quad T_{1}=.2618 \quad \phi_{1}=14.500^{\circ} \\
& \text { INV } \phi_{1}=.00554 \\
& \text { INV } \phi_{2}=\frac{.2618}{2 \times 2.500}+.00554=.05790 \text { Radians } \\
& \phi_{2}=30.693^{\circ} \quad \operatorname{COS} \phi_{2}=.85991 \quad \operatorname{COS} \phi_{1}=.96815 \\
& r_{2}=\frac{2.500 \times .96815}{.85991}=2.8147
\end{aligned}
$$

Fig. 4

Given the normal circular pitch, the normal pressure angle and the helix angle of a helical gear, to determine the circular pitch and the pressure angle in the plane of rotation:

When,

$$
\begin{aligned}
\psi & =\text { Helix Angle } \\
\phi_{\mathrm{n}} & =\text { Normal Pressure Angle } \\
\mathrm{p}_{\mathrm{n}} & =\text { Normal Circular Pitch } \\
\phi & =\text { Pressure Angle in Plane of Rotation } \\
\mathrm{p} & =\text { Circular Pitch in Plane of Rotation }
\end{aligned}
$$

Then,

$$
p=\frac{p_{n}}{\cos \psi} \quad \operatorname{TAN} \phi=\frac{\operatorname{TAN} \phi_{n}}{\operatorname{COS} \psi}
$$

Example: $\quad \psi=25^{\circ} \quad \phi_{\mathrm{n}}=20^{\circ} \quad \operatorname{COS} \psi=.90631 \quad$ TAN $\phi_{\mathrm{n}}=.36397 \quad \mathrm{p}_{\mathrm{n}}=.5236$

$$
p=\frac{.5236}{.90631}=.57772 \quad \text { TAN } \phi=\frac{.36397}{.90631}=.40159 \quad \phi=21.880^{\circ}
$$

Given the tooth proportions in the plane of rotation of a pair of helical gears (parallel shafts), to determine the center distance at which they will mesh tightly:

When,

$$
\begin{aligned}
r_{1} & =\text { Given Radius of 1st Gear } \\
r_{2} & =\text { Given Radius of 2nd Gear } \\
N_{1} & =\text { Number of Teeth in 1st Gear } \\
N_{2} & =\text { Number of Teeth in 2nd Gear } \\
\phi_{1} & =\text { Pressure Angle at } r_{1} \text { and } r_{2} \\
\phi_{2} & =\text { Pressure Angle at Meshing Position } \\
T_{1} & =\text { ARC Tooth Thickness at } r_{1} \\
T_{2} & =\text { ARC Tooth Thickness at } r_{2} \\
C_{1} & =\text { Center Distance for Pressure Angle } \phi_{1} \\
C_{2} & =\text { Center Distance for Pressure Angle } \phi_{2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\mathbb{N V} \phi_{2} & =\frac{N_{1}\left(T_{1}+T_{2}\right)-2 \pi r_{1}}{2 r_{1}\left(N_{1}+N_{2}\right)}+\mathbb{I N V} \phi_{1} \\
C_{1} & =r_{1}+r_{2} \\
C_{2} & =\frac{C_{1} \cos \phi_{1}}{\cos \phi_{2}}
\end{aligned}
$$

Fig. 5

Example:

$$
\begin{aligned}
r_{1} & =2.500 \quad T_{1}=.2800 \quad N_{1}=30 \quad \phi_{1}=14.500^{\circ} \\
r_{2} & =4.000 \quad T_{2}=.2750 \quad N_{2}=48 \quad C_{1}=6.500 \\
\text { INV } \phi_{2} & =\frac{30(.2800+.2750)-2 \pi \times 2.500}{2 \times 2.500(30+48)}+.00545=.007955 \\
\phi_{2} & =16.315^{\circ} \quad \cos \phi_{2}=.95973 \\
C_{2} & =\frac{6.500 \times .96815}{.95973}=6.5570
\end{aligned}
$$

Given the pitch radius and helix angle of a helical gear, to determine the lead of the tooth.
When, $\quad R=$ Pitch Radius
$L=$ Lead of Tooth
$\psi=$ Helix Angle
Then,

$$
L=\frac{2 \pi R}{T A N \pi}
$$

Example:

$$
\mathrm{R}=2.500 \quad \psi=22.50^{\circ} \quad \text { TAN } \psi=.41421
$$

$$
\mathrm{L}=\frac{2 \times 3.1416 \times 2.500}{.41421}=37.9228
$$

Given the number of teeth, helix angle and proportions of the normal basic rack of a helical gear, to determine the pitch radius and the base radius:

When,

$$
\begin{aligned}
\mathrm{N} & =\text { Number of Teeth } \\
\psi & =\text { Helix Angle at } \mathrm{R} \\
\mathrm{P}_{\mathrm{n}} & =\text { Normal Diametral Pitch } \\
\mathrm{R} & =\text { Pitch Radius } \\
\phi_{\mathrm{n}} & =\text { Normal Pressure Angle } \\
\phi & =\text { Pressure Angle in Plane of Rotation } \\
\mathrm{R}_{\mathrm{b}} & =\text { Base Radius }
\end{aligned}
$$

Then,

$$
\begin{aligned}
R & =\frac{N}{2 P_{n} \cos \psi} \quad \operatorname{TAN} \phi=\frac{\operatorname{TAN} \phi_{n}}{\operatorname{Cos} \psi} \\
R_{b} & =R \cos \phi=\frac{N \cos \phi}{2 P_{n} \cos \psi}
\end{aligned}
$$

Example: $\quad N=30 \quad \psi=25^{\circ} \quad P_{n}=6 \quad \phi_{\mathrm{n}}=141 / 2^{\circ} \quad \operatorname{COS} \psi=.90631 \quad$ TAN $\phi_{\mathrm{n}}=.25862$

$$
\begin{aligned}
R & =\frac{30}{2 \times 6 \times .90631}=2.7584 \\
\operatorname{TAN}_{\phi} & =\frac{.25862}{.90631}=.28535 \quad \phi=15.926^{\circ} \quad \operatorname{COS} \phi=.96162 \\
R_{b} & =\frac{30 \times .96162}{2 \times 6 \times .90631}=2.65256
\end{aligned}
$$

Given the normal diametral pitch, numbers of teeth and center distance, to determine the lead and helix angle:
When,

$$
\begin{aligned}
N_{1} & =\text { Number of Teeth in Pinion } \\
N_{2} & =\text { Number of Teeth in Gear } \\
P_{n} & =\text { Normal Diametral Pitch } \\
C & =\text { Center Distance } \\
\psi & =\text { Helix Angle } \\
L_{1} & =\text { Lead of Pinion } \\
L_{2} & =\text { Lead of Gear }
\end{aligned}
$$

Then,

$$
\cos \psi=\frac{N_{1}+N_{2}}{2 P_{n} C} \quad L_{1}=\frac{\pi N_{1}}{P_{n} \operatorname{SIN} \psi} \quad L_{2}=\frac{\pi N_{2}}{P_{n} \operatorname{SIN} \psi}
$$

Example:

$$
\begin{aligned}
P_{n} & =6 \quad N_{1}=18 \quad N_{2}=30 \quad \mathrm{C}=4.500 \\
\cos \psi & =\frac{18+30}{2 \times 6 \times 4.500}=.88889 \quad \psi=27.266^{\circ} \quad \operatorname{SIN} \psi=.45812 \\
L_{1} & =\frac{3.1416 \times 18}{6 \times .45812}=20.5728
\end{aligned} \quad L_{2}=\frac{3.1416 \times 30}{6 \times .45812}=34.2880
$$

Given the tooth proportions in the plane of rotation of a helical gear, to determine the position of a mating rack of different circular pitch and pressure angle:

When,

ψ_{1}	$=$ Given Helix Angle at R_{1}
ψ_{2}	$=$ Helix Angle for Mating Rack
ψ_{b}	$=$ Base Helix Angle
$\phi_{\mathrm{n} 1}$	$=$ Normal Pressure Angle at R_{1}
$\phi_{\mathrm{n} 2}$	$=$ Pressure Angle of Mating Rack
ϕ_{1}	$=$ Pressure Angle at R_{1} in Plane of Rotation
ϕ_{2}	$=$ Pressure Angle of Mating Rack in Plane of Rotation
R_{1}	$=$ Given Pitch Radius
R_{2}	$=$ Pitch Radius with Mating Rack

$\mathrm{R}_{\mathrm{b}}=$ Base Radius
$\mathrm{a}=$ Addendum of Rack
$T_{1}=$ ARC Tooth Thickness at R_{1}
$N=$ Number of Teeth
X $=$ Distance from Center of Gear to Tip of Rack Tooth
$\mathrm{p}_{\mathrm{n} 1}=$ Normal Circular Pitch at R_{1}
$\mathrm{P}_{\mathrm{n} 2}=$ Normal Circular Pitch of Rack
Note: $\left(p_{n 1} \operatorname{COS} \phi_{n 1}\right.$ Must Be Equal To ($\left.p_{n 2} \operatorname{COS} \phi_{n 2}\right)$
$\mathrm{R}_{2}=$ Pitch Radius with Mating Rack

Then,

$$
\begin{aligned}
\operatorname{SIN} \psi_{\mathrm{b}} & =\operatorname{SIN} \psi_{1} \operatorname{COS} \phi_{\mathrm{n} 1} \\
\operatorname{SIN} \psi_{2} & =\frac{\operatorname{SIN} \psi_{\mathrm{b}}}{\operatorname{COS} \phi_{\mathrm{n} 2}}=\frac{\operatorname{SIN} \psi_{1} \operatorname{COS} \phi_{\mathrm{n} 1}}{\operatorname{COS} \phi_{\mathrm{n} 2}} \\
\operatorname{TAN} \phi_{2} & =\frac{\operatorname{TAN} \phi_{\mathrm{n} 2}}{\operatorname{COS} \psi_{2}} \quad R_{2}=\frac{R_{\mathrm{b}}}{\operatorname{COS} \phi_{2}} \\
X & =R_{2}-a+\frac{1}{2 \operatorname{TAN} \phi_{2}}\left[2 \mathrm{R}_{2}\left(\frac{T_{1}}{2 R_{1}}+\operatorname{INV} \phi_{1}-\operatorname{INV} \phi_{2}\right)-\frac{\pi R_{2}}{N}\right]
\end{aligned}
$$

Fig. 6

Example: $\quad \psi_{1}=25^{\circ} \quad \phi_{\mathrm{n} 1}=1412^{\circ} \quad \phi_{1}=15.926^{\circ} \quad \mathrm{R}_{1}=2.7584 \quad \mathrm{R}_{\mathrm{b}}=2.65256$

$$
\begin{gathered}
\phi_{n 2}=20^{\circ} \quad \mathrm{a}=.185 \quad \mathrm{~T}_{1}=.2888 \quad \mathrm{~N}=30 \\
\mathrm{SIN} \psi_{1}=.42262 \quad \operatorname{COS} \psi_{1}=.90631 \quad \operatorname{TAN} \phi_{\mathrm{n} 1}=.25862 \quad \operatorname{TAN} \phi_{\mathrm{n} 2}=.36397 \\
\mathrm{P}_{\mathrm{n} 1}=.5236 \quad \mathrm{P}_{\mathrm{n} 2}=.53946 \quad \operatorname{COS} \phi_{\mathrm{n} 1}=.96815 \quad \operatorname{COS} \phi_{\mathrm{n} 2}=.93969 \\
{\left[\mathrm{P}_{\mathrm{n} 1} \operatorname{COS} \phi_{\mathrm{n} 1}=.50692\right]=\left[\mathrm{p}_{\mathrm{n} 2} \operatorname{COS} \phi_{\mathrm{n} 2}=.50692\right]} \\
\mathrm{SIN} \psi_{2}=\frac{.42262 \times .96815}{.93969}=.43542 \quad \psi_{2}=25.812^{\circ} \quad \operatorname{COS} \psi_{2}=.90023 \\
\mathrm{TAN} \phi_{2}=\frac{.36397}{.90023}=.40431 \quad \phi_{2}=22.014^{\circ} \quad \operatorname{COS} \phi_{2}=.92709 \\
\mathrm{INV} \phi_{2}=.020093 \quad \mathrm{INV} \phi_{1}=.007387 \quad \\
\mathrm{R}_{2}=\frac{2.65256}{.92709}=2.86117 \quad \\
\mathrm{X}=2.86117-.185+\frac{1}{2 \times .40431}\left[5.72234\left(\frac{.2888}{5.5168}+.007387-.020093\right)-\frac{.31416 \times 2.86117}{30}\right]=2.5729
\end{gathered}
$$

Given the center distance, number of teeth and basic rack proportions (hob proportions) of a pair of helical gears, to determine the hobbing data:

When,

$$
\begin{aligned}
\phi_{\mathrm{nc}} & =\text { Pressure Angle of Hob } \\
\mathrm{p}_{\mathrm{nc}} & =\text { Diametral Pitch of Hob } \\
\mathrm{a}_{\mathrm{c}} & =\text { Addendum of Hob } \\
\mathrm{C}_{1} & =\text { Center Distance with Pressure Angle of } \phi_{1} \\
\mathrm{C}_{2} & =\text { Given Center Distance of Operation } \\
\mathrm{N}_{1} & =\text { Number of Teeth in Pinion } \\
\mathrm{R}_{01} & =\text { Outside Radius of Pinion } \\
\mathrm{R}_{\mathrm{r} 1} & =\text { Root Radius of Pinion } \\
\mathrm{L}_{1} & =\text { Lead of Pinion } \\
\mathrm{R}_{1} & =\text { Pitch Radius of Pinion } \\
\mathrm{b}_{1} & =\text { Dedendum of Pinion } \\
\psi & =\text { Helix Angle of Generation }
\end{aligned}
$$

$\mathrm{N}_{2}=$ Number of Teeth in Gear
$\mathrm{R}_{\mathrm{o} 2}=$ Outside Radius of Gear
$\mathrm{R}_{\mathrm{r} 2}=$ Root Radius of Gear
$L_{2}=$ Lead of Gear
$\mathrm{R}_{2}=$ Pitch Radius of Gear
$\mathrm{b}_{2}=$ Dedendum of Gear
$\psi_{2}=$ Helix Angle of Operation
$\phi_{1}=$ Pressure Angle of Generation in Plane of Rotation
$\phi_{2}=$ Pressure Angle of Operation in Plane of Rotation
$p_{1}=$ Diametral Pitch of Generation in Plane of Rotation
$h_{t}=$ Total Tooth Depth of Gears

Then, Make trial calculation for lead as follows:

$$
\begin{array}{rlr}
\cos \psi_{1} & =\frac{N_{1}+N_{2}}{2 p_{\mathrm{nc}} \mathrm{C}_{2}} \\
\mathrm{~L}_{1} & =\frac{\pi \mathrm{N}_{1}}{\mathrm{p}_{\mathrm{nc}} \operatorname{SIN} \psi_{1}} \quad \mathrm{~L}_{2}=\frac{\pi \mathrm{N}_{2}}{\mathrm{p}_{\mathrm{nc}} \operatorname{SIN} \psi_{1}}
\end{array}
$$

Select values for L_{1} and L_{2} which can be readily obtained on the hobbing machine:
Then,

$$
\begin{aligned}
& \operatorname{SIN} \psi_{1}=\frac{\pi N_{1}}{p_{\mathrm{nc}} L_{1}}=\frac{\pi N_{2}}{p_{\mathrm{nc}} L_{2}} \quad \operatorname{TAN} \phi_{1}=\frac{\operatorname{TAN} \phi_{\mathrm{nc}}}{\operatorname{COS} \psi_{1}} \\
& \mathrm{p}_{1}=\mathrm{p}_{\mathrm{nc}} \operatorname{COS} \psi_{1} \quad \mathrm{C}_{1}=\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{2 \mathrm{p}_{1}} \quad \operatorname{COS} \phi_{2}=\frac{\mathrm{C}_{1} \operatorname{COS} \phi_{1}}{\mathrm{C}_{2}} \\
&\left(\mathrm{R}_{\mathrm{r} 1}+\mathrm{R}_{\mathrm{r} 2}\right)=\mathrm{C}_{1}-2 \mathrm{a}_{\mathrm{c}}+\frac{\mathrm{C}_{1}}{\operatorname{TAN} \phi_{1}}\left(\operatorname{INV} \phi_{2}-\operatorname{INV} \phi_{1}\right) \\
& \mathrm{b}_{1}=\frac{\mathrm{C}_{2}-\left(\mathrm{R}_{\mathrm{r} 1}+\mathrm{R}_{\mathrm{r} 2}\right)}{1+\sqrt{\frac{N_{2}}{N_{1}}}}
\end{aligned} \quad \mathrm{~b}_{2}=\frac{\mathrm{C}_{2}-\left(\mathrm{R}_{\mathrm{r} 1}+\mathrm{R}_{\mathrm{r} 2}\right)}{1+\sqrt{\frac{N_{1}}{N_{2}}}} .
$$

Note: When smallest N is 30 or more, then, $\quad \mathrm{b}_{1}=\mathrm{b}_{2}=\frac{\mathrm{C}_{2}-\left(\mathrm{R}_{\mathrm{r} 1}+\mathrm{R}_{\mathrm{r} 2}\right)}{2}$

$$
\begin{aligned}
& R_{1}=\frac{N_{1} C_{2}}{N_{1}+N_{2}} \quad R_{2}=\frac{N_{2} C_{2}}{N_{1}+N_{2}} \quad R_{r 1}=R_{1}-b_{1} \quad R_{r 2}=R_{2}-b_{2} \\
& h_{t}=.932\left[C_{2}-\left(R_{r 1}+R_{r 2}\right)\right] \quad R_{01}=R_{r 1}+h_{t} \quad R_{02}=R_{r 2}+h_{t}
\end{aligned}
$$

$\operatorname{TAN} \psi_{2}=\frac{2 \pi R_{1}}{L_{1}}=\frac{2 \pi R_{2}}{L_{2}}$
(Continued on next page)

Example: $\quad \mathrm{N}_{1}=20 \quad \mathrm{~N}_{2}=60 \quad \mathrm{p}_{\mathrm{nc}}=5 \quad \mathrm{~A}_{\mathrm{c}}=.2314 \quad \mathrm{C}_{2}=9.00$

$$
\phi_{\mathrm{nc}}=14.500 \quad \text { TAN } \phi_{\mathrm{nc}}=.25862
$$

Trial Calculation:

$$
\begin{aligned}
\cos \psi_{1} & =\frac{20+60}{2 \times 5 \times 9.00}=.88889 & \psi_{1}=27.266^{\circ} \quad \operatorname{SIN} \psi=.45812 \\
L_{1} & =\frac{20 \pi}{5 \times .45812}=27.4303 & L_{2}=\frac{60 \pi}{5 \times .45812}=82.2909
\end{aligned}
$$

We will select the following values for L_{1} and L_{2} :

$$
\begin{aligned}
& L_{1}=27.500 \quad L_{2}=82.500 \\
& \operatorname{SIN} \psi=\frac{20 \pi}{5 \times 27.500}=.45696 \quad \psi_{1}=27.1910 \quad \operatorname{COS} \psi_{1}=.88949 \\
& \text { TAN } \phi_{1}=\frac{.25862}{.88969}=.29069 \quad \phi_{1}=16.208^{\circ} \quad \operatorname{COS} \phi_{1}=.96025 \quad \text { INV } \phi_{1}=.007796 \\
& p_{1}=5 \times .88949=4.44745 \quad C_{1}=\frac{20+60}{2 \times 4.44745}=8.99392 \\
& \cos \phi_{2}=\frac{8.99392 \times .96025}{9}=.95960 \quad \phi_{2}=16.3416 \quad \text { INV } \phi_{2}=.007994 \\
& \left(R_{r t}+R_{r 2}\right)=8.99392-2 \times .2314+\frac{8.99392}{.29069}[.007994-.007796]=8.5372 \\
& b_{1}=\frac{9.00-8.5372}{1+\sqrt{60 / 20}}=.16938 \quad b_{2}=\frac{9.00-8.5372}{1+\sqrt{20 / 60}}=.29340 \\
& R_{1}=\frac{20 \times 9.00}{20+60}=2.250 \quad R_{2}=\frac{60 \times 9.00}{20+60}=6.750 \\
& R_{r 1}=2.250-.16938=2.08062 \quad R_{r 2}=6.750-.29340=6.45660 \\
& h_{t}=.932[9.00-8.5372]=.43133 \\
& R_{01}=2.08062+.43133=2.51195 \quad R_{02}=6.45660+.43133=6.88793 \\
& \text { TAN } \psi_{2}=\frac{2 \pi 2.250}{27.5}=.514079 \quad \psi_{2}=27.207
\end{aligned}
$$

The specifications for this pair of gears are as follows:
$N_{1}=20$
$R_{r 1}=2.08062$
$\mathrm{L}_{2}=82.500$
Helix angle for hobbing $=27.1910$
$R_{01}=2.51195$
$\mathrm{N}_{2}=60$
$\mathrm{R}_{\mathrm{r} 2}=6.45660$
$R_{1}=2.250$
$\mathrm{R}_{\mathrm{o2}}=6.88793$
$C_{2}=9.00$
$L_{1}=27.500$
$R_{2}=6.750$

$$
\begin{aligned}
& \text { Given the proportions of an internal helical gear drive, to determine the contact ratio: } \\
& \text { When, } \quad \begin{array}{rlrl}
& & \\
\mathrm{R}_{1} & =\text { Pitch Radius of Helical Gear } & \mathrm{R}_{2}=\text { Pitch Radius of Internal Gear } \\
\mathrm{R}_{01} & =\text { Outside Radius of Helical Gear } & \mathrm{R}_{\mathrm{i}}=\text { Internal Radius of Internal Gear } \\
\mathrm{R}_{\mathrm{b} 1} & =\text { Base Radius of Helical Gear } & \mathrm{R}_{\mathrm{b} 2}=\text { Base Radius of Internal Gear } \\
\phi & =\text { Pressure Angle in Plane of Rotation } & & \\
\mathrm{p} & =\text { Circular Pitch in Plane of Rotation } & & \\
\mathrm{C} & =\text { Center Distance } \\
\mathrm{m}_{\mathrm{p}} & =\text { Contact Ratio }
\end{array}
\end{aligned}
$$

Then, $\quad m_{p}=\frac{\sqrt{R_{01}{ }^{2}-R_{b 1}{ }^{2}}+\mathrm{C} \sin \phi-\sqrt{R_{i}{ }^{2}-R_{b}{ }^{2}}}{\mathrm{p} \cos \phi}$

Example:

$$
\begin{array}{lllll}
R_{1}=1.250 & R_{01}=1.4375 & R_{b 1}=1.1746 & \phi=20^{\circ} \quad \mathrm{P}=.3927 \\
R_{2}=3.500 \quad R_{i}=3.4375 \quad R_{\mathrm{b} 2}=3.2888 \quad \mathrm{C}=2.250 \\
\operatorname{SIN} \phi=.34202 \quad \cos \phi=.93969
\end{array}
$$

Given the proportions of a pair of helical gears (external or internal), to determine the face contact ratio:
When,

$$
\begin{aligned}
\mathrm{F} & =\text { Face Width } \\
\mathrm{p} & =\text { Circular Pitch in Plane of Rotation } \\
\psi & =\text { Helix Angle } \\
\mathrm{m}_{\mathrm{f}} & =\text { Face Contact Ratio }
\end{aligned}
$$

Then, $\quad m_{f}=\frac{F \text { TAN } \psi}{p}$
$\begin{aligned} \text { Example: } \quad & \mathrm{F}=1.500 \quad \mathrm{p}=.3927 \quad \psi=30^{\circ} \quad \text { TAN } \psi=.57735 \\ & \mathrm{~m}_{\mathrm{f}}=\frac{1.500 \times .57735}{.3927}=2.20\end{aligned}$

Given the proportions of a pair of helical gears (external or internal), to determine the total contact ratio:
When, $\quad m_{p}=$ Contact Ratio
$\mathrm{m}_{\mathrm{f}}=$ Face Contact Ratio
$\mathrm{m}_{\mathrm{t}}=$ Total Contact Ratio
Then,

$$
m_{t}=m_{p}+m_{f}
$$

Example: $\quad m_{p}=1.59 \quad m_{f}=2.20$
$\mathrm{m}_{\mathrm{t}}=1.59+2.20=3.79$

TOOTH ROOT STRESSES . . .
(continued from page 20)
estimated), the amount of crowning should be chosen in such a way that when applying the service load, the lowest root stresses will be the result. This criterion is satisfied when the product

$$
\mathrm{K}_{\mathrm{c}}-\mathrm{K}_{\mathrm{F} \beta-\mathrm{c}} \cdot \mathrm{Y}_{\gamma} \cdot \mathrm{K}_{\mathrm{F} \beta-\mathrm{f}}
$$

reaches a minimum.
As an example this optimization is performed for the test gears in Fig. 18. One can see that the curve for K_{c} has a flat minimum in the area of small crowning values (near gear set B). This result seems to be plausible because of the very stiff test rig.

It should be noted that the optimization method introduced here is only based on the tooth root stresses and should only be used if tooth breakage is the critical failure criterion. An optimization for contact stresses may be quite different and usually provides a guide to higher amounts of crowning.

Summary

By strain gauge measurements of spiral bevel gears, the influence of lengthwise crowning and relative displacements between pinion and gear on tooth root stresses was investigated. It was found that the crowning effects the load distribution over the lines of contact and the load sharing between pairs of teeth meshing simultaneously. For both influences a quantitative description could be derived.
(continued on page 47)

DEBURRS GEARS FAST

 SECONDS \star INTERNAL-EXTERNAL SPUR \& HELICAL GEARS TO 20 INCHES DIAMETER

11707 McBean Drive, El Monte, CA 91732 (818) 442-2898

CIRCLE A-II ON READER REPLY CARD

Fig. 16-Influence of combined displacements on the maximum root stresses $\sigma_{\mathrm{T} \text { max }}$ at the pinions. (Amount of crowning, see Fig. 2.)

CLASSIEIED

Rates: Classified Display-per inch (minimum $3^{\prime \prime}$) 1X-\$120, 3X-\$110, 6X-\$100. Type will be set to advertiser's layout or Gear Technology will set type at no extra charge. Word Count: 35 characters per line, 7 lines per inch.

Payment: Full payment must accompany classified ads. Mail copy to Gear Technology, P.O. Box 1426, Elk Grove Village, IL 60007. Agency Commission: No agency commision on classifieds.

Materials Deadline: Ads must be received by the 25th of the month, two months prior to publication. Acceptance: Publisher reserves the right to accept or reject classified advertisements at his discretion.

GEAR ESTIMATING

The COSTIMATOR ${ }^{\text {© }}$ computer aided cost estimating system insures speed and consistency in the difficult task of estimating the costs of all types of gears.
Used by small shops and Fortune 500 companies throughout the country.

For complete information contact us today.

Manufacturers Technologies, Inc. 59G Interstate Dr.
West Springfield, MA 01089 (413) 733-1972

CIRCLE A-16 ON READER REPLY CARD

COMPUTER AIDS

GEARS-SPLINES

DESIGN AND TOOLING

- Custom gear design including nonstandard pressure angles for more strength.
- Programs to enter tooling data into computer files and search for existing cutters to cut a new gear or spline.
- Gearing computer software for sale.
- Consulting services for gear and spline problems.

VAN GERPEN-REECE ENGINEERING 1502 Grand Blvd.
Cedar Falls, lowa 50613
(319) 2664674

CIRCLE A-27 ON READER REPLY CARD

GEAR CALCULATION PROGRAMS FOR THE GEAR MANUFACTURER

INEXPENSIVE, EASY TO RUN ON IBM COMPATIBLES

EXTERNAL
INCH (DP) INTERNAL

METRIC (Mod.) SPUR HELICAL
STRAIGHT BEVEL (104) SPIRAL BEVEL \#16 \& 27 GRD BLANK AND SUMMARIES
For Brochure and More Information CALL OR WRITE
UNIVERSAL GEAR CO. INC.
P.O.Box A.G., Anza, CA 92306 (714) 763-4616

CIRCLE A-17 ON READER REPLY CARD

REBUILDING

HOBBER REBUILDING SPECIALISTS

Having trouble meeting today's demand quality control tolerances? Let our factory trained and experienced staff return your machine to optimum operating condition.
We specialize in repairing, rebuilding and modernizing all makes of hobbers.

- Cleveland Rigidhobbers
- Gould \& Eberhardt
- Barber Colman

PRESSMATION INC.
522 Cottage Grove Road Bloomfield, Conn. 06002 (203) 242-8525

CIRCLE A- 25 ON READER REPLY CARD

Bring in new customers for your business by advertising in GEAR TECHNOLOGY, The Journal of Gear Manufacturing. Call (312) 437-6604

GEAR DESIGN/ANALYSIS for IBM PC \& compatibles. GEARCALC (\$995): design optimum spur \& helical gearsets from application data. AGMA218 (\$1495): calculate pitting and bending fatigue lives per AGMA Std. 218.01. SCORING + (\$495): analyze/plot scoring \& wear probabilities. Fast, menu-driven programs work as one system (combined price \$2495), do extensive errorchecking. Comprehensive manuals (theory, operation, examples) included. Demo available. GEARTECH Software, Inc., 1017 Pomona Ave., Albany, CA 94706 (415) 524-0668.

CIRCLE A-18 ON READER REPLY CARD

SUBCONTRACT

GEAR TOOTH GRINDING \& HONING ONLY

Production Quantities 3/4" P.D. to $27.5^{\prime \prime}$ P.D.; 3.5 D.P. and $11^{\prime \prime}$ Face

Gear Tooth Finishing is our Only Business

We have no turning, hobbing or shaping capability

ALLEGHENY GEAR CORP.

23 Dick Road Depew, NY 14043 716-684-3811

CIRCLE A-23 ON READER REPLY CARD

There's still time . . . order closing date for a classified ad in the July/August issue is May 10th.

POSITION WANTED

SALES MANAGER with 14 years experience seeking manufacturing position in gear related industry. Process experience in hobbing, shaping, grinding and inspection of spur and helical gears. Resume and references upon request. Willing to relocate for the right opportunity.

Send reply to: Box CT, Gear Technology, P.O. Box 1426, Elk Grove, IL 60007

It's true, our Consumer Information Catalog is filled with booklets that can answer the questions American consumers ask most.

To satisfy every appetite, the Consumer information Center puts together this helpful Catalog quarterly containing more than 200 federal publications you can order. It's free, and so are almost half of the booklets it lists on subjects like nutrition, money management, health and federal benefits.

So get a slice of American opportunity. Write today for your free Catalog:

Consumer Information Center

Department AP, Pueblo, Colorado 81009
U.S General Services Administration

TOOTH ROOT STRESSES . . .
(continued from page 45)

Fig. 17 - Nomogram for determining the displacement factor $K_{F 3-f}\left(f_{v 1}{ }^{*}-f_{v 1} / d_{m 2}{ }^{*} 1000, f_{a}^{*}-f_{a} / d_{m 2}{ }^{*} 1000\right)$.

Fig. 18-Optimization of lengthwise crowning.

In the case of relative displacements, deviations in pinion mounting distance and in offset have the strongest influence on the root stresses. A method was introduced to determine the increase or decrease of maximum stresses that have to be expected for a combination of certain values of these parameters. Further, a optimization criterion was derived that allows finding the amount of lengthwise crowning producing the lowest root stresses for a certain service condition.

References

1. WINTER, H., PAUL, M. "Influence of Relative Displacements Between Pinion and Gear on Tooth Root Stresses of Spiral Bevel Gears." Gear Technology, July/August, 1985.
2. JARAMILLO, T.J. "Deflections and Moments due to a Con-
centrated Load on a Cantilever Plate of Infinite Length." Journal of Applied Mechanics, Vol. 17, Trans., ASME, Vol. 72 1950, S. 67-72, 342-343.
3. WELLAUER, E.J., SEIREG, A. "Bending Strength of Gear Teeth by Cantilever Plate Theory." Journal of Engineering for Industry. Trans. ASME, Aug. 1960, S. 213-222.
4. AGMA 2003 - A86: Standard for Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel and Spiral Bevel Gear Teeth. 1986.
5. DIN 3991: Tragfähigkeitsberechnung von Kegelrädern ohne Achsversetzung; Normentwurf. 1986.
6. COLEMAN, W. "Improved Method for Estimating Fatigue Life of Bevel and Hypoid Gears." SAE Quarterly Transactions. Vol. 6, No. 2, 1952.
7. COLEMAN, W. "Effect of Mounting Displacements on Bevel and Hypoid Gear Tooth Strength." SAE-Paper 7501 51. 1975.
